在已排序的矩阵中找出第 k 大的数
Table of Contents
Leetcode 经典题:
https://leetcode.com/problems/kth-smallest-element-in-a-sorted-matrix
这个问题题意很简单,在一个行和列都是非递减排序的矩阵中,求第 k 小的数。
题目下面有两个 follow up:
Could you solve the problem with a constant memory (i.e., O(1) memory complexity)?
Could you solve the problem in O(n) time complexity? The solution may be too advanced for an interview but you may find reading this paper fun.
第一条,我没有仔细思考过,我觉得可能的解法是将整个 matrix 原地排序。(参考 #更优解法)
第二条中提到了这个论文,最近花时间看了下,是一篇非常古早的论文了(1984 年)。本质是是一种分治方法。
常规解法 #
最容易想到的是用数组读出来,然后排序。显然时间复杂度 O(n^2log(n^2)),空间复杂度 O(n^2)。
进一步利用优先队列优化一下,首先将第一行放入队列,然后每次 dequeue 一个,计数,并 enqueue 一个同一列的数。直到第 k 个结束。
这样的时间复杂度 O(nlogn),空间复杂度 O(n)。
#if !LC_SOLUTION_EXT
class Solution {}
#endif
extension Solution {
func kthSmallest(_ matrix: [[Int]], _ k: Int) -> Int {
let n = matrix.count
typealias Pair = (i: Int, j: Int, v: Int)
var pq = PriorityQueue<Pair>([], { $0.v < $1.v })
for j in 0..<n {
pq.enqueue((i: 0, j: j, v: matrix[0][j]))
}
var cnt = 0
var ans = 0
while cnt < k {
guard let last = pq.dequeue() else { break }
if last.i < n - 1 {
pq.enqueue((i: last.i + 1, j: last.j, v: matrix[last.i+1][last.j]))
}
ans = last.v
cnt += 1
}
return ans
}
}
已经是比较优化的一种解法了,但下面论文的给出的是一种 O(n) 的解法。
论文解法 #
http://www.cse.yorku.ca/~andy/pubs/X+Y.pdf
伪代码
function select(A, k);
begin
(x, y) = biselect(n, A, k, k)
return x
end select
function biselect(n, A, k1, k2);
begin
if n <= 2
then (x, y) = (k1-th of A, k2-th of A)
else begin
(a, b) = biselect(n', A', k1', k2')
ra_ = rank_(A, a)j
rb+ = rank+(A, b)
L = { A[i][j] | b < A[ij][j] < a}
if ra_ <= k1 - 1 then x = a
else if k1 + rb+ - n^2 <= 0 then x = b
else x = pick(L, k1 + rb+ - n^2)
if ra_ <= k2 - 1 then y = a
else if k2 + rb+ - n^2 <= 0 then y = b
else y = pick(L, k2 + rb+ - n^2)
end
end
return (x, y)
end biselect;
泛化解法 #
论文解法只适用于 n * n 的矩阵,而且求子矩阵比较复杂,搜索到一篇泛化成 n * m 矩阵并简化解法的文章:
注意:这里说矩阵元素必须是不重复的,但实际上修改算法中
rankInMatrix
方法即可实现对可重复问题的支持。
https://chaoxu.prof/posts/2014-04-02-selection-in-a-sorted-matrix.html
代码是用 Haskell 写的,
展开查看
尝试用 在线转化器 转换成 C 语言的,发现各种狗屁不通。。
AI 还是很难在可预见的未来代替人类程序员啊!
手动转换成 Swift:
#if !LC_SOLUTION_EXT
class Solution {}
#endif
extension Solution {
func kthSmallest(_ matrix: [[Int]], _ k: Int) -> Int {
let n = matrix.count
let m = matrix[0].count
guard k >= 1 && k <= n * m else { return -1 }
let (result, _) = _biselect(k-1, k-1, matrix)
return result
}
func _biselect(_ lb: Int, _ ub: Int, _ mat: [[Int]]) -> (Int, Int) {
let n = mat.count
let m = mat[0].count
if n > m {
return _biselect(lb, ub, mat.transposed())
}
var (a, b) = (mat[0][0], mat[n-1][m-1])
if n >= 3 {
let hm = m / 2 + 1
let _lb = lb / 2
let _ub = min(ub / 2 + n, n * hm - 1)
let halfMat = mat.halfMat()
(a, b) = _biselect(_lb, _ub, halfMat)
}
let ra = _rankInMatrix(mat, a: a)
let values = _selectRange(mat, a: a, b: b)
return (values[lb-ra], values[ub-ra])
}
// O(n): top-left region bound of index pairs, matrix[i][j] <= b
func _frontier(_ mat: [[Int]], _ b: Int) -> [(Int, Int)] {
var result: [(Int, Int)] = []
let n = mat.count
let m = mat[0].count
var i = 0
var j = m - 1
while i <= n - 1 && j >= 0 {
if mat[i][j] <= b {
result.append((i, j))
i += 1
} else {
j -= 1
}
}
return result
}
// O(n): the rank of an element in the matrix
func _rankInMatrix(_ mat: [[Int]], a: Int) -> Int {
let n = mat.count
let m = mat[0].count
var i = 0
var j = m - 1
var rank = 0
while i <= n - 1 && j >= 0 {
if mat[i][j] < a {
rank += (j + 1)
i += 1
} else {
j -= 1
}
}
return rank
}
// O(n): select all elements x in the matrix such that a <= x <= b
func _selectRange(_ mat: [[Int]], a: Int, b: Int) -> [Int] {
var result: [Int] = []
for (x, y) in _frontier(mat, b) {
for j in (0...y).reversed() {
if mat[x][j] >= a {
result.append(mat[x][j])
} else {
break
}
}
}
return result.sorted()
}
}
extension Array where Element == [Int] {
// 矩阵转置
func transposed() -> [[Int]] {
guard let firstRow = self.first else { return [] }
return firstRow.indices.map { index in
self.map { $0[index] }
}
}
// Let A' be the matrix we get by removing all even index (1-indexed) columns from A,
// and add the last column.
func halfMat() -> [[Int]] {
guard let firstRow = self.first else { return [] }
let n = self.count
let m = firstRow.count
let hm = m / 2 + 1
var ret = [[Int]](repeating: [Int](repeating: 0, count: hm), count: n)
let isEven = (m % 2 == 0)
for i in 0..<n {
for j in 0..<hm {
if j == hm - 1 {
ret[i][j] = isEven ? self[i][j * 2 - 1] : self[i][2 * j]
} else {
ret[i][j] = self[i][j * 2]
}
}
}
return ret
}
}
更优解法 #
上述论文解法显得非常复杂,LeetCode 上目前最好的方法是二分查找:
// MARK: Better Solution - Binary Search
extension Solution {
func kthSmallest(_ matrix: [[Int]], _ k: Int) -> Int {
let n = matrix.count
func _countSmaller(_ a: Int) -> Int {
var (i, j) = (0, n - 1)
var count = 0
while i < n && j >= 0 {
if matrix[i][j] <= a {
count += (j + 1)
i += 1
} else {
j -= 1
}
}
return count
}
var (left, right) = (matrix[0][0], matrix[n-1][n-1])
while left < right {
let mid = left + (right - left) / 2
let count = _countSmaller(mid)
if count < k {
left = mid + 1
} else {
right = mid
}
}
return left
}
}